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6. Abstract 

The program goal was  to  design and demonstrate a method for temperature control of the com- 
bustion gases  in the peripheral zone of a rocket combustor which would reduce ablative throat 
erosion, prevent melting of zirconia throat inserts, and maintain high combustion performance. 
Included a r e  techniques for aMlyZing and predicting zoned injector performance, as wel l  as the 
philosophy and method for accomplishing an optimum compromise between high performance and 
reduced effective gas  temperature. 
rocket engine which used as propellants N204 and a blend of 50-percent N2H4 and 50-percent 
UDMH at 690-kN/m (100-psia) chamber pressure and an overall O/F of 2.0. The method 
selected to provide temperature control was to use 30 percent of the propellant to  form a periph- 
e ra l  zone of combustion gases  a t  an O/F of 1.31 and 2700 K (4861' R). The remaining 70 percent 
of the propellant in the core was at  an O/F of 2. 45 to keep the overall O/F at 2.0. 
bustion produced a calculated temperature decrease from the unzoned case of 275 K (495' R) with 
a vacuum specific impulse decrease of 72.6 N-sec/kg (7.4 lbf-sec/lbm), or 2.2 percent of 
theoretical kinetic. 
0.013 cm/sec (0.0052 in. /sec) to  0.0076 cm/sec (0.003 in. /sec) and prevented melting of z i r -  
conia throat inserts. 

The experimental work was done with a 4450-N (1000-lbf) 
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Zoned com- 

This temperature decrease lowered the ablative throat erosion rate  from 
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SUMMA RY 

A method w a s  demonstrated whereby temperature control of the combustion gases  

The goal of the program w a s  to  a r r ive  at a zone temperature of com- 
in the peripheral zone of a rocket combustor w a s  used to  provide ablative and throat in- 
s e r t  durability. 
bustion which w a s  low enough to prevent melting of a zirconia throat insert  while main- 
taining specific impulse performance equivalent to at least  3016 N-sec/kg (307. 5 
lbf-sec/lbm) at  an expansion a rea  ratio of 60. 
bustion gas  temperature of 2700 K (4861' R) and a specific impulse value of 3026 
N-sec/kg (308.6 lbf-sec/lbm). 
rocket engine which used nitrogen tetroxide and a 50-percent blend of hydrazine with 
unsymmetrical dimethyl hydrazine propellants at 690-kN/m (100-psis) chamber pres- 
s u r e  and an oxidant-to-fuel mixture ratio (O/F) of 2.0. 

measured and calculated. The method selected to prevent inser t  melting was to use  
30 percent of the propellant mass  flow to form an outer peripheral zone of combustion 
gases at an O/F of 1.31. The remaining 70 percent of the propellant mass  flow in the 
center core  w a s  set at an O/F of 2.45 in order  to keep the overall O/F at 2.0. This 
technique produced a calculated temperature decrease of 275 K (495' R) in the peripheral 
zone, with an attendant specific impulse decrease of 72.6 N-sec/kg (7 .4  lbf-sec/lbm). 
A direct  correlation between ablative erosion and peripheral-zone combustion temper- 
ature w a s  also shown. 

particular injector in use. The zone O/F would be  set t o  provide the desired tempera- 
ture, and the amount of m a s s  flow in the outer zone would be minimized. 
70-percent core - 30-percent zone mass  split used with injector 2, a core O/F of 1.8 and 
a zone O/F of 1.31 would give the desired zone temperature at an overall O/F of 1.65. 
A performance gain of 52.0 N-sec/kg (5.3 lbf-sec/lbm) over the method used herein 
would then be realized. 

This goal w a s  met with a peripheral com- 

The experimental work was done with a 4450-N (1000-lbf) 
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Performance losses  associated with various temperature control methods w e r e  both 

An optimum design would set the core O/F at the maximum performance for  the 

For the 



I NT RO DUCT1 ON 

Development of ablative rocket engines using earth-storable propellants requires 
not only good injector design to provide high combustion efficiency, but also suitable ma- 
terials for the nozzle throat to maintain dimensional stability and thus high specific im- 
pulse over the life of the mission. Propellants of particular interest were nitrogen 
tetroxide and a 50-percent blend of unsymmetrical dimethyl hydrazine with hydrazine 
(as used on contemporary spacecraft) at a chamber pressure of 690 kN/m (100 psia). 
Previous reports in this effort have dealt with ablative (ref. 1) and insert  materials 
(ref. 2) to provide the required dimensional stability for 3.05-centimeter (1.2-in. ) 
throat diameters. The purpose of the work reported in reference 3 w a s  to develop 7.62- 
centimeter (3.0-in. ) diameter hard throat inserts for application to long-term (700 sec 
total) duty cycles with restar t  capability as well  as steady-state operation (300 sec con- 
tinuous). In the course of testing these 7.62-centimeter (3.0-in. ) diameter throat 
inserts, it w a s  found necessary to modify the combustion environment to provide the de- 
s i red lifetime since better materials were not available. 
cussed injector design changes intended to provide a cooler combustion temperature en- 
vironment near the chamber wall while maintaining an engine performance level of 
95-percent theoretical equilibrium characteristic exhaust velocity Czheo. This is 
equivalent to a vacuum specific impulse of 3016 N-sec/kg (307. 5 lbf-sec/lbm) at an ex- 
pansion a rea  ratio of 60. 

The present discussion details the procedure followed in t e rms  of temperature, 
ablative compatibility, combustion performance, and vacuum specific impulse perform- 
ance. While other work determined available performance for earth-storable propel- 
lants (ref. 4) and designed zoned injectors (refs. 5 and 6), the work herein includes 
correlation of performance with ablative erosion and measured combustion gas temper- 
atures. Methods to improve upon the results are also suggested. 
provide general guidelines for control of the temperature of the outer zone of combus- 
tion with as little loss  in overall performance as possible. 

The approach of the injector modification program was  to achieve improved ablative 
and throat insert  durability by decreasing the peripheral-zone combustion temperature 
of a high-performance injector. A design temperature range of 2660 to 2720 K (4800' to 
4900' R) w a s  selected because previous experience indicated this range would prevent 
zirconia insert  melting found with the unmodified injector operating at a combustion 
temperature of 2980 K (5360' R). Lower temperatures would give more safety margin 
but might prevent achievement of the 95-percent c:heo performance goal. 

sensitive to decreased oxidant-to-fuel mixture ratio (O/F) than to increased O/F. 
Hence, it w a s  decided to lower the peripheral-zone combustion temperature by decreas- 
ing the O/F of the peripheral zone. 
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In this report are dis- 

The intention is to 

The combustion temperature for earth-storable propellants was  seen to be more 

It was  decided to keep the overall O/F at 2.0 to 



make the work more directly comparable to  the previous work of references 1 and 2. 
This a lso maintains more favorable bulk density characterist ics for contemporary space- 
craft  tankage but necessitates operating the injector core  at O/F's higher than 2.0. 

The report  proceeds through injector design, modification for ablative-insert com- 
patibility, and the effect upon delivered vacuum specific impulse. A section on sugges- 
tions to improve upon the resul ts  is included. 

mary  system. U. S. customary units appear as a secondary system in parentheses after 
the SI values. The measurements and calculations for  this work were done in U. S. cus- 
tomary units. 

This report  displays all values in the International System of Units (SI) as the pri- 

A P PA RATUS 

Fac il ity 

Figure 1 shows the test  facility. The flow system is illustrated schematically in 
figure 2. 
to the atmosphere. The exhaust products were then collected and water scrubbed. The 
thrust stand w a s  supported on precision-ground flexure plates to  provide rigid restraint  
in all directions, except axial, with respect to the engine centerline. In the axial direc- 
tion, the thrust stand w a s  restrained entirely by the load cell, which w a s  mounted in 
tension on spherical bearings. The load cell, a dual-bridge strain-gage transducer, w a s  
kept in tension by a preload spring of low spring constant to preclude the load on the load 
cell  from ever becoming compressive. 

To avoid any extraneous forces from propellant piping, the feedlines were either 
flex hoses o r  long lines entering at right angles to  the thrust axis. The effects of the 
preload spring, the spring constant of the flexure plates, and the spring constant of the 
propellant piping on the operation of the thrust  stand were accounted for by careful in- 
place calibration. The calibration w a s  performed at regular intervals by pulling on the 
thrust stand in precise alinement with the engine centerline by means of a calibration 
load cell in s e r i e s  with a hydraulic cylinder. The calibration load cell  w a s  also a dual- 
bridge strain-gage transducer which w a s  periodically calibrated by hanging precision 
deadweights from it. 

An engine w a s  installed in the horizontal thrust stand. The nozzle exhausted 

In st ru men tat ion 

Chamber pressure measurements were made by using redundant strain-gage bridge 
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pressure transducers connected through a hole in the injector face. Both fuel and oxi- 
dant flow rates  were measured by venturi and turbine meters  in series. Iron constantan 
thermocouples were  used to measure propellant temperatures. Open-bead tungsten/ 
tungsten-rhenium thermocouples were used to measure combustion gas temperature at 
the rocket throat. The wire  diameter was  0.051 centimeter (0.020 in. ) and the bead 
diameter was 0.097 centimeter (0.038 in. ), The beads were located at depths of 0.102, 
0.254, 0.477, and 0.610 centimeter (0.040, 0. 100, 0. 180, and 0.240 in. ) into the com- 
bustion gas stream. At each depth, three thermocouples were spaced 120' apart to pro- 
vide good circumferential coverage. The heat-sink nozzle with thermocouples installed 
is illustrated in figure 3. 

Data Recording and Processing 

Electrical outputs of 50 channels were sampled at 2500 samples per second so that 
each output was  recorded at 0.02-second intervals. Electrical signals were then digit- 
ized and recorded on magnetic tape. The data were  converted to engineering quantities 
and the appropriate calculations were made by a digital computer. Selected sensor out- 
puts were also recorded continuously on s t r ip  charts and an oscillograph for system 
monitoring and control room processing. 

Thrust Chamber Assembly 

Injectors. - Table I is a summary of the design values for all the injectors used in 
The pattern and element detail of injectors 1, 2, 2A, 2B, and 2C are the program. 

shown in figures 4, 5, and 6, respectively. 

previous programs with the same propellants (ref. 7). 
selected because of their very good liquid atomization characteristics (ref. 8) and their 
ability to provide axial resultant momentum over a range of operating conditions. The 
use of uniform injector face coverage, oxidant hole s izes  of 0.109-centimeter (0.043-in. ) 
diameter or less, and oxidant-to-fuel velocity ratios of 0.6 and 0.7 had previously pro- 
vided high combustion performance but not erosion-free ablative operation. The ap- 
proach in those earlier studies was  to maintain high performance and attempt to combat 
ablative throat erosion by the application of hard throat inserts. 

Injector 1 (fig. 4) had the 6 1  triplet elements arranged radially to provide spray 
fans parallel to the wall  for  ablative compatibility. 
four circles about a center element in a circumferential spacing that was  very nearly 

The basic injector designs were fuel-oxidant-fuel triplets similar to those used in 
Triplet elements were originally 

The elements were arranged in 
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TABLE I. - INJECTOR DESCRIPTION 

Design 
oxidant- 
to-fuel 

Injector Oxidant holes Fuel holes Design ve- Impingement 
locity ratio, 

Distance ~ Included anglc 
I 

Desig- Type Pattern Num- 
nation ber  

r:;y 1 o.60 2.00 1 Triplet (fuel on Circular (ra- 6 1  

oxidant) dial element) 

cm 

1.421 

2 

2A 

Triplet (fuel on 
oxidant) 

Triplet (low 
O:F zone on 
outside) 

Triplet (low 
0,’F zone on 
outside) 

Triplet and 
quadlet (low 
O,/F zone on 
outside) 

2B 

2 c  

Mutually per- 
pendicular grid 

Mutually per- 
pendicular grid 

Mutually per- 
pendicular grid 
with zone ele- 
ments radial 

Mutually per- 
pendicular grid 
with outer ele- 
ments arranged 
three fuel holes 
and one oxidant 
hole 

137 

- 
10 1 
36 

10 1 
30 
6 

101 
36 

Eiameter Num- 1 Diameter 
- 

cm 
- 
0.109 

0.089 

- 
0.089 

.089 

0.089 
.089 
.089 

0.089 
.089 

0.043 122 ~ 0.053 0.021 

0.035 

0.035 
.035 

0.035 
.035 
.035 

0.035 
.035 

202 0.046 0.018 

12 .061  .024 

202 0.046 0.018 

14 . 0 6 1  .024 

2.00 0.67 1 1.310 

;“i between fuels 

deg 

0.560 1 40 

-30 0. 516 

0.516 0.516r 
0. 516 I 30 



the same as the radial spacing. This resulted in the elements being distributed uni- 
formly across  the whole area of the injector face. The arrangement of elements, as 
mentioned, w a s  radial with the resultant spray fans parallel to the chamber wal l  and 
nearly parallel to adjacent spray fans. In view of experience with unlike doublet ele- 
ments, it is likely that the distribution of propellants in a spray fan is not particularly 

uniform. The authors postulate a mi r ro r  image of two unlike doublets together produc- 
ing fuel-rich zones on the sides of the spray fans and oxidant-rich zones on the ends of 
the spray fans. With a parallel fan arrangement, any intra-element reaction is dis- 
couraged, since spray fans would intersect with fuel-rich side onto fuel-rich side, and 
oxidant-rich end onto oxidant-rich end. The relation of this intra-element reaction was  
changed in the design of injector 2 (see fig. 5). This injector had triplet elements ar- 
ranged in a grid pattern uniformly distributed over the entire a rea  of the injector face. 
Fineness and uniformity of propellant distribution w a s  improved over that of injector 1 
by increasing the number of elements (137 instead of 61) and by orienting the elements 
mutually perpendicular to enhance intra-element reactions. 
intersected a fuel-rich side onto an oxidant-rich end, and conversely. Modifications to 
injector 2 were evolved during the course of the program, based upon experimental r e -  
sults. Therefore, these modifications a r e  described in the order  in which the rationale 
fo r  their design is discussed. 

Thrust chambers. - The requirements of the program necessitated four different 
thrust chamber designs. 
engine performance data during short  firings. A flame-sprayed zirconia coating pro- 
vided thermal protection to  the steel  for firing durations as long as 7 seconds. 
traction ratio of 3 and a combined length from injector to throat of 47. 17 centimeters 
(18. 57 in. ) was used to  give an engine characteristic chamber length L* of 94 centime- 
t e r s  (37 in. ). The heat-sink engine components a r e  shown in figure 3. 

Second, a water-cooled thrust chamber, shown in figure 8, w a s  used for steady- 
state, long-duration fir ings to check injector durability and to obtain additional perform- 
ance data. The 
15-centimeter (6-in. ) long water-cooled chamber section w a s  a lso used upstream of the 
ablative and throat insert  sections (discussed next) to  bring the combined chamber length 
to 38 centimeters (15 in. ). In addition, the water-cooled nozzle was  used with cylindri- 
cal  ablative chamber sections to measure injector-chamber compatibility during 300- 
second firings. 

the influence of injector modification on ablative erosion characteristics. 
w a s  manufactured to Fiberite MX 2646 specification, which includes chopped-square 
cloth reinforcement. In some tests, an ablative chamber section was used with the 
water-cooled nozzle to evaluate the effect of injector modifications on the tendency of 

The spray fans in injector 2 

First, a heat-sink thrust chamber (fig. 7) was used to provide 

A con- 

The water-cooled thrust chamber components a r e  shown in figure 9. 

Third, a sil ica phenolic ablative thrust chamber w a s  designed (fig. 10) to measure 
The material 



the injector pattern to erode the chamber wall. 

illustrated in figure 11. 
erosion for  long-duration firings up to 1000 seconds of total firing time. 

Fourth, a thrust chamber with a throat insert  and chamber liner was  designed as 
The overall design was intended to prevent thrust chamber 

PROCEDURE 

Engine Operation and Control 

Before each firing, the propellant tanks were pressurized with nitrogen gas. F i re  
valve openings were automatically sequenced to provide an oxidant lead of approximately 
0. 1 second. 
stant chamber pressure and oxidant-to-fuel ratio. 
an automatic timer. 
throat a r ea  increase exceeded 25 percent. 
if gas  leakage or excessive erosion ra tes  were noted. 

Individual automatic closed-loop controllers were used to maintain a con- 
The run duration was controlled by 

Emergency shutdowns were made manually 
An automatic cutoff w a s  used to terminate any firings when the 

Throat Measurements 

New ablative and throat insert  diameters were measured with a micrometer. 
erosion or surface roughening, photographs were taken of the throat plane. 
larged photographs were planimetered to obtain throat a r ea  after firing, and the a reas  
were converted to an effective radius. 

The effective throat radius change w a s  also calculated during each firing from in- 
stantaneous values of chamber pressure and weight flow. 

After 
The en- 

C al c u I at  io n s 

The following calculations were made: 
(1) Characteristic exhaust velocity efficiency vC* - An injector calibration firing 

w a s  made for each injector with heat-sink hardware. 
then used to calculate ablative throat radius at any time as in calculation 3. 
tions were made to the C* values to account for  heat losses. 
in the appendix. ) 

The vC* values determined were 
No correc-  

(All symbols are defined 
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111 "111 I 1  -I 1.1, I I I I I .I. - ..,,., .. . . . .. 

Pi* 

exp L 

where C h e o  is the theoretical one-dimensional shifting equilibrium characteristic ve- 
locity and 

(2) Momentum pressure loss correction, (Pt/Pinj) = rp 

Ing - v. -1 

where vinj is assumed to equal zero. Values of pn/Pn, In, C:heo were obtained from 
theoretical data printouts performed by the methods of reference 9. Injection Mach 
numbers for the liquid propellants were sufficiently low to justify assumption of zero in- 
jection velocity. A value of 0.98 w a s  calculated for rp. 

(3) Effective throat radius change 
(a) Throat radius at any time 

* *  
pqc 'the0 

Reff, 8 = $" 'gCP 'inj 'd 

(b) Effective throat radius change at any time 

(4) Characteristic chamber length 

TJC L* =-  

8 



(5) Theoretical vacuum thrust coefficient efficiency 

KrncF, design + [?)(%) 
'F, design +-k)($) - 

q C ~ , v a c  - - 

(6) Vacuum specific impulse efficiency 

1 hac, exp 

frac, the0 
q t a c  = 

t a c ,  exp 

(7) Experimental vacuum thrust coefficient efficiency 

(8) Characteristic velocity of an O/F-zoned injector 

C* C* - -  wp, zone zone + wp, core core - -__ = c& C&erall-  
Wp, zone + wp, core 

* '*,vera11 W total - CcoreWp, core - - 
'Eone 1x7 

"'p, zone 
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(9) Combustion temperature 

2 

Tcom = Ttheo (2) (9) 

(10) Zone combustion gas temperature 

= (Theoretical TcOm, zone, O/F Tcom, zone 

(11) Calculated vacuum specific impulse 

'vat, calc = (‘vac, odk)(qC*,xp)(qCF, vac 1 

(12) Discharge coefficient ,of oxidant injector (same method for fuel) 

(13) Mass flow rate of injector-zone oxidant (same method for  fuel) 

1 - wax, zone - wax, total - wax, core 

A - wax, zone - wax, total - ‘d, ox, core ox, core $GFG& J 
All theoretical values for these calculations were determined for these propellants by 
using the method of reference 11. 

RESULTS AND DISCUSS ION 

The injector development program discussed herein was conducted to investigate 
means of obtaining a combustion gas environment compatible with advanced throat insert 
materials while maintaining high overall engine performance representative of state-of - 
the-art engines using earth-storable propellants. Ablative erosion rate and circumfer- 
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entia1 uniformity were used as parameters  to evaluate the various injector modifications. 
The injector modifications that evolved a r e  discussed in the order  in which they were 
evaluated. 
bustion temperature, vacuum specific impulse, and ablative erosion. Impulse perform- 
ance data a r e  presented first at low expansion a r e a  ratio; then to  put the data into the 
perspective of a space engine, performance is corrected analytically to high a rea  ratio. 
Finally, recommendations for  improving performance with the same wall  combustion 
environment as well as general methods for obtaining peak performance a r e  included. 

At the beginning of the program, two injectors (designated 1 and 2) were designed 
and tested (see table I). In figure 12 a r e  the experimental C* values for both injectors. 
The precision of the C* values for  this program was  estimated at &. 7 m/sec 
( 4 2  ft/sec), o r  4 . 4  percent qC* for one standard deviation. Injector 2 is seen to be 
about 12 percent more efficient than injector 1. The improved performance for injec- 
tor 2 w a s  attributed to better vaporization from the smaller holes and better mixing of 
the propellants by the mutually perpendicular triplets. Comparable resul ts  were noted 
for the larger injectors of reference 7. The calculated combustion temperatures based 
on measured performance values (see eq. (7)) for the two injectors a r e  shown in fig- 
u r e  13, with injector 2 about 111 K (200' R) higher than injector 1. Extrapolated values, 
for la ter  discussion, a r e  shown by dashed portions on both curves. 

The specific impulse values measured for both injectors at  the low nozzle expansion 
a r e a  ratio used for  testing ( E  = 1.8)  a r e  shown in figure 14. Losses from the theoretical 
one-dimensional equilibrium value were calculated by the simplified method given in 
reference 10. An approximation to the Interagency Chemical Rocket Propulsion Group 
(ICRPG) method also shown in figure 14 w a s  that of equation (11): 

The order of presentation of results is as follows: C* performance, com- 

1 

) - * 'vat, calc - ('vat, odk)(TCexp)(TCF, vac 

where C* w a s  derived from test  measurement of chamber pressure.  The thrust coef- 
ficient efficiency of 9 7 . 2  percent w a s  obtained by theoretical calculation using equa- 
tion (5). Careful thrust measurement over an extended ser ies  of test  firings confirmed 
the thrust coefficient efficiency at 97. 2kO. 7 percent for one standard deviation. 

with a conical nozzle ( (Y = 15') at an expansion area  ratio of 60, assuming that the thrust 
coefficient efficiency remained constant at 9 7 . 2  percent. The results a r e  shown in fig- 
u r e  15. 

The peak value of specific impulse for both injectors appears a t  an O/F of 1. 55 for 
the low a rea  ratio and at an O/F of 1 . 8  for the high area ratio. The difference was  due 
to a shift in the one-dimensional kinetic peak theoretical performance, which occurs at 
an O/F of 1 . 8  for  the high-area-ratio nozzle and at an O/F of 1. 55 for the low-area-ratio 

Performance curves based upon low-area-ratio data were calculated for an engine 

I 
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nozzle. 
high-area-ratio impulse values. Accordingly, all further considerations of perform- 
ance a r e  reflected against a map of one-dimensional kinetic theoretical curves for 
high-area-ratio nozzles. 
hac = (tat, odk)($F)(?$$c) where a constant value of q c F  = 0.972 was used. 

erosion curves of figure 16. The steady-state erosion ra tes  along with the t imes to 
start erosion a r e  tabulated in table TI. The steady-state erosion rate is calculated from 
the slope of the erosion curve. The calculation of equation (3b) assumes a circular flow 
area; and thus, the results were called effective throat radius change. An estimate of 
the degree of gouging present may be made by referring to the circular reference disk 
fo r  each injector. The time to start erosion w a s  defined as the time when erosion ex- 
ceeds material  expansion and first becomes positive. 

The significant influence of injector design is illustrated by the 13 percent effi- 
ciency advantage of injector 2 with essentially the same ablative throat erosion rate  as 
injector 1. Overall heat transfer at the throat must have been similar, although the 
calculated combustion temperature for injector 1 was 110 K (200' R) below that of in- 
jector 2. Coarser elements and orientation providing less  mixing for injector 1 were 
thought to account for the heat-transfer similarity at different efficiency levels. 

t o r s  (0.013 cm/sec; 0.005 in. /sec); however, the low-cost ablative used was  not the 
most erosion resistant (ref. 1). Further, the temperature of 2977 K (5358' R) for injec- 
to r  2 w a s  high enough to melt and destroy catastrophically in 225 seconds one of the more 
advanced inser ts  (Zr02) intended for 700-second firing (ref. 3). Although not fired with 
a throat insert, injector 1 would probably have produced similar results based upon its  
ablative throat erosion characteristics. In order to proceed with insert  testing, a lower 
gas  temperature adjacent to the chamber wall  w a s  needed. Based on previous experi- 
ence (ref. 7), it w a s  determined that combustion temperatures of 2660 to 2720 K (4800' 
to 4900' R) would be low enough to prevent melting of inser ts  but still high enough to give 
the desired impulse performance. 

An effective format for studying the tradeoffs of performance and combustion tem- 
perature is shown in figure 17. Plotted here is the theoretical one-dimensional kinetic 
vacuum specific impulse ( 100 percent VI 
as each i s  affected by varying the propellant mixture ratio (O/F). 
sired performance and temperature goal as a region bounding I 
3016 N-sec/kg (307. 5 lbf-sec/lbm) and temperature less than 2720 K (4900' R). It is 
obvious that the desired performance could be attained with 100 percent 71 over a 
limited range of O/F values below 1.8. Methods considered for reaching the desired 
performance a r e  the following: (1) decrease the overall O/F, (2) decrease injector effi- 

Therefore, a realistic design must include kinetic losses  and be based upon 

Specific values a r e  calculated by the expression 

The results of testing both injectors with ablative nozzles a r e  given by the throat 

1 

The ablative throat erosion rate  was unsatisfactorily high with both of these injec- 

) against theoretical combustion temperature 
Shown also i s  the de- 
values greater than 

SP 

SP 

SP 
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TABLE II. - INJECTOR PERFORMANCE AT OVERALL OXIDANT-TO-FUEL RATIO OF 2.0 

(a) SI units 
I 

----- .0127 _ _ _ _  - - - - - - - - - - - - - _ _ _ _  _ - -_  oxidant) Zone 0 
Overall 100 2.00 1712 1642 95.90 3267 3045 93.21 ---- 

Location Percent of Mixture Characteristic exhaust Vacuum specific impulse hac Combustion Erosion 
of pro- propellant ratio, velocity, c *  tempera- 

Injector 

ture, Steady- Desig- Type Pattern pellant flow O,F --- Theoret- Calcu- 71, 

nation mass  Theoret- Experi- qC*, ical (one- lated, percent state 

2 

_ _  
ical, mental, percent dimensional N-sec/kg of theo- rate, 

m/sec m,'sec of theo- kinetic), retical  cm/sec 
retical N-sec/kg 

Triplet (fuel on Mutually per- Core 100 2.00 1712 1671 97.60 3267 3099 94.87 2975 

3099 94.87 ---- 
,0132 _ _ _ _  - - - - - - . - - - - - - --- _ _ _  _ _ _ _ _  oxidant) pendicular grid Zone 0 

Overall 100 2.00 i 1712 1671 97.60 1 3267 

2.55 
1.21 
2.00 

2.30 
1.40 
2.00 

2.45 
1. 31 
2.00 

1636 1599 
1722 1686 
1712 1626 

1671 1631 
1740 1677 
1712 1643 

1650 1610 
1733 1680 
1712 1631 

2A 

Triplet [all outer 
elements radial) 

Triplet (low O/F 
zone on outside) 

2c 

- 

97. 96 
95.00 

97.60 
96.37 
95.99 

97.60 
96.37 
95.30 

Triplet and quad- 
let (all outer ele- 
ments arranged 
three fuel holes 
on one oxidant 
hole) 

3143 2993 95.22 2663 
3016 92.34 ' - - --  3267 

3204 3039 94.87 2964 
3218 3014 93.67 2731 
3267 3048 93.31 ---- 

3167 3004 94.87 2949 
3 189 3006 94.25 2700 

3026 92.63 - - - -  3267 

Mutually per- 
pendicular grid 
with zone 

Mutually per-  
pendicular grid 
with radial zone 

Core 
Zone 
Overall 

Mutually per- 
pendicular grid 
with radial zone 

69.84 
30. 16 
100 

Core 69.83 
Zone 30. 17 
Overall 100 

Core 73.45 
26.55 

-- 
97.60 1 3137 2976 1 94.87 2993 

~ 

0.0076 

~ 

0.0053 

Time to 
start ,  

sec  

12 

17 

c. 
w 



TABLE 11. - Concluded. INJECTOR PERFORMANCE AT OVERALL OXIDANT-TO-FUEL RATIO OF 2 .0  

(b) U. S. customary units 

lombustion 
tempera- 

ture, 
OR 

Erosion Injector Jercent of 
Iropellant 

flow 

Characterist ic exhaust 
velocity, C* - Location 

of pro- 
pellant 
mass  

lixture 
ratio, 
O/F Desig- 

nation 
Pat tern Theoret- 

ical  (one- 
dimensional 

kinetic), 
lbf - sec,/lbm 

:alculated, 
Jf -sec/lbm 

$3 

lercent 
If theo- 
retical 

Steady- 
s ta te  
rate,  

in. /sec 

'ime to 
start ,  

sec  
nC* , 

percent 
of theo- 
retical  

1 Triplet (fuel on 
oxidant) 

Circular Core 
Zone 
Overall  

100 
0 

100 

2.00 95.90 333 .1  310.5 
_ _ _ _ _  
310. 5 

93 .21  

93.21 
_- -__ 0.0050 I 12 

2.00 95.90 333.1 

2 Triplet (fuel on 
oxidant) 

Mutually per-  
pendicular grid 

Core 
Zone 
Overall 

100 
0 

100 

2.00 97.60 
- - -__  
97.60 

333.1 316.0 
_ _ _ _ _  
316.0 

94. a7 
0.0052 I 17 

2.00 333.1 94.87 

69.83 
30. 17 

100 

5366 5247 
5648 ~ 5533 
5616 5335 

97.60 
97.96 
95.00 

319.9 
320. 5 
333.1 

303.5 
305.2 
307.6 

94.87 
95.22 
92.34 

5387 
4793 0.0019 1 Triplet  (low O/F 

zone on outside) 

Triplet (all  outer 
elements radial) 

2A 

2B 

Mutually per-  
pendicular grid 
with zone 

Mutually per- 
pendicular grid 
with radial  zone 

2. 55 
1. 2 1  
2.00 

2. 30 
1. 40 
2.00 

Core 
Zone 
Overall 

Core 
Zone 
Overall 

Core 
Zone 
Overall  

64  

13. 45 
26. 55 

100 

5482 5351 
5710 ~ 5503 
5616 5391 

97.60 
96.37 
95.99 

326.7 
328. 1 
333.1 

309.9 
307.3 
310.8 

94. a7 
93.67 
93.31 

5335 
4927 0.0030 1 39 

42 
Mutually per- 
pendicular grid 
with radial  zone 

69.84 
30. 16 

100 

2. 45 
1. 3 1  
2.00 

5413 5283 
5685 ~ 5513 
5616 5352 

97.60 
96.97 
95.30 

322.9 
325.2 
333.1 

306.3 
306.5 
308.6 

94. a7 
94.25 
92.63 

0.0021 1 2C Triplet  and quad- 
let (all  outer ele- 
ments have three 
fuel holes on one 
oxidant hole) 



ciency, (3) apply fuel f i l m  cooling to the periphery of the combustion gases, and (4) ap- 
ply a low O/F zone to  the periphery of the combustion gases. Each of these methods is 
discussed in detail in the following paragraphs. 

perature and performance level is further illustrated in figure 18. The upper curve w a s  
calculated for a thrust coefficient efficiency of 97.2 percent and a C" efficiency of 
100 percent as a reference. It is seen that increasing O/F does not reduce the tempera- 
ture  sufficiently at the desired performance level. Decreasing O/F does allow operation 
at both the desired performance and temperature levels if high C" efficiency can be 
maintained. Extrapolation of the performance data for injectors 1. and 2 in figures 13 
and 15 shows the O/F operating points necessary to achieve the desired temperature. 
These extrapolated curves a r e  plotted in figure 18 for both injectors. Both injectors 
fall below the desired performance level, even though qC* values were 96 to 97 percent. 
Injector 2, however, would nearly meet both requirements at an O/F of about 1 .3 .  
a practical alternative for existing spacecraft, an O/F of 1 . 3  is probably too low because 
of bulk density considerations. 
w a s  discarded from further consideration. 

in injector efficiency at an O/F of 2. 
dimensional kinetic performance with an expansion a r e a  ratio of 60. 
efficiencies (97.2 percent used herein) do not affect combustion gas temperature but 
lower the available performance to 3174 N-sec/kg (323 .7  lbf-sec/lbm) for 100 percent 
C* performance. Temperatures at lower C* values (calculated by eq. (9)) a r e  marked 
on the curve with the actual performance of injectors 1 and 2 shown. It can be  seen that 
the desired goal cannot be met by th is  means. 

considered up to now have attempted to meet the performance objective by bringing all 
the combustion gases to the desired temperature and specific impulse values. An alter-  
native would be to divide the flow in the thruster into two regions: one adjacent to  the 
wall  with the temperature depressed, and the other in the center of the thruster with 
specific impulse maximized. 
the region (or  zone) adjacent to the wal l  is composed of only fuel, quite cool but of 
limited thickness and axial extent and quite low in specific impulse. 
this method, the flow in the fuel zone must be precisely tailored to produce the desired 
cooling at the throat plane with as low a fuel flow as possible. Fuel film cooling shows 
some promise, but w a s  considered to be  a specialized form of the method discussed next. 

e ra l  form of combustion gas flow stratification is O/F zoning. Selection of this method 
w a s  based upon two aspects. The first is that a very cool (such as film cooled) zone is 

(1) Decrease the overall O/F - The influence of O/F variation on combustion tem- 

As 

Based upon this discussion, decreasing the overall O/F 

(2) Decrease injector C* efficiency - Figure 19 illustrates the effect of a decrease 

Thrust coefficient 
The top point represents theoretical one- 

(3) Apply film cooling to the periphery of the combustion gases - All the methods 

One method of doing this is with film cooling. In this case, 

In order to optimize 

(4) Applying a low O/F zone to the periphery of the combustion gases - A more  gen- 
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not entirely necessary since a temperature of 2660 to 2720 K (4800' to 4900' R) is toler- 
able with the chamber materials in question. A zone of 2660 to 2720 K (4800' to 
4900' R) would also have l e s s  performance loss than a cooler zone. Application of an 
O/F zone between 1.2 and 1. 4 to the periphery of the injector would provide the desired 
temperature if sufficient mass  flow were used to completely blanket the higher tempera- 
ture core. The second aspect involves minimizing the mixing between the two zones. 
The velocity difference between core flow and peripheral-zone flow is less  in the case of 
O/F zoning than it is with film cooling. Hence, one would expect less mixing and better 
maintenance of the zone cooling influence throughout the length of the chamber. 

The O/F zoning technique seemed the most promising for controlling boundary tem- 
peratures while maintaining high delivered specific impulse. It was, therefore, decided 
to modify injector 2 by O/F zoning. 

row of 36 elements of injector 2, as shown in figure 4(a). 
ating O/F w a s  2.0. Therefore, the core O/F was  raised to compensate for the low O/F 
zone. Reasons for operation at an overall O/F of 2.0 included illustration of significant 
effects under overall operation at the temperature peak, compatibility with contemporary 
spacecraft tankage, and comparison with previous insert  development done at an O/F of 
2.0 (ref. 2). 

Mass flow rates in the core and zone were calculated for  each modification by using 
equations (10) and (11). Basically, the method calculates discharge coefficients c d  for 
the unmodified injector oxidant and fuel as in equation (10). 
modified injector is calculated as in equation (11) assuming no change in core discharge 
coefficient. 
lations. Values are subtracted to give zone flows, and the respective O/F values a r e  
derived. 
ard deviation on the weight flow split Wzone/Wtotal and r t l .  7 percent for one standard 
deviation on O/F ratio. Some of the spread in the values may be  due to the assumption 
that the measured pressure drop across  the injector face during propellant flow applies 
equally to both core and zone. 

The initial modification (injector 2A) w a s  to enlarge the fuel holes in the outer 
36 elements from 0.046-centimeter (0.018-in.) diameter to 0.061-centimeter (0.024-in. ) 
diameter. The flow calculations then indicated that for an overall O/F of 2.0, 30 per- 
cent of the mass  flow would be in the outer zone at  an O/F of 1 .22  and 70 percent of the 
mass  flow would be in the core with an O/F of 2. 55. 

When injector 2A was  tested at an overall O/F of 2.0, an overall C* of 1626 m/sec 
(5335 ft/sec) was determined from measured values. In order to calculate the zone C*, 
it w a s  necessary to know the core C*. It w a s  assumed that the core C* remained at 

The first modification w a s  accomplished by increasing fuel flow area  in the outer 
For these tests, overall oper- 

The various modifications to injector 2 and their results a r e  tabulated in table II. 

The core flow rate  for the 

Measured pressure drops and core flow a r e a s  a r e  used for core flow calcu- 

Precision of the calculations has  been estimated at 4 . 2  percent for one stand- 
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97.6 percent efficiency, as it w a s  with the unmodified injector. 
2.55 calculated for the core, the assumed core C* w a s  1599 m/sec (5247 ft/sec). 
Equation (8), which was used to calculate zone C*, assumes zero  mixing between zone 
and core. Equation (8) is of the form 

Thus, for the O/F of 

C&erall = Czxp = (Mass fraction of zone)(CEone) + (Mass fraction of core)(C*,,,,) 

In SI units, 

1626 = 0. 3017(C~0ne) + 0.6983(1599) 

1626 = 0.3017 Czone + 1117 

C;one = 1687 m/sec 

In U. S. customary units, 

5335 = 0.3017(C~0ne) + 0.6983(5247) 

5335 = 0.3017 C*zone + 3664 

clone = 5535 ft/sec 

This calculation i l lustrates that 30 percent of the overall C* is the zone contribution 
and 70 percent of the overall C* is in the core contribution. 

The measured, assumed, and calculated C* values a r e  given in figure 20. The 
relation between these values for  zero mixing is illustrated by the straight line connect- 
ing the points. The data generally support the zero-mixing criterion. If 100-percent 
mixing between zone and core were to occur in the rocket combustion chamber after in- 
jection, the upper dashed line in figure 20 would give the locus of points for overall C* 
at  any mass  split from 100-percent core to 100-percent zone. For our particular case 
where 70 percent of the m a s s  flow w a s  a t  the core O/F and 30 percent of the mass  flow 
w a s  a t  the zone O/F, perfect mixing would produce a C* of about 1670 m/sec (5480 
ft/sec) at an overall O/F of 2.0. Of course, 100 percent mixing by the time the gases  
reach the throat would also eliminate the temperature protection desired from the O/F 
zoning. The influence of choosing O/F values on both sides of the performance peak is 
also illustrated in figure 20. Note that core  and zone are both operating at high effi- 
ciency (above 97 percent) but the overall efficiency of the combination is only 95 per-  
cent. Changing the mass  split between core and zone would only move the overall C* 

~ 
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along the dashed line so that, if no mixing occurs, the overall efficiency is always below 
the zone-core efficiencies. Again, this is due to zone-core O/F placement on both sides 
of the C* peak O/F. 

The calculations for specific impulse values involved multiplying the theoretical 
one-dimensional kinetic impulse by characteristic velocity efficiency and the vacuum 
thrust coefficient efficiency (97.2 percent). The calculation was  done independently for 
zone, core, and overall O/F points and resulted in the slightly curved line for injector 2A 
(fig. 21). The influence of placing the zone and core O/F on both sides of the perform- 
ance peak is seen to reduce overall efficiency below both the zone and core efficiency. 

The temperatures for injector 2A (fig. 22) a r e  calculated by applying the zone and 
core ( v C * ) ~  values to the theoretical combustion temperature. The core w a s  operating 
at 2937 K (5287' R) and the zone w a s  operating at 2664 K (4795' R). 
the low end of the 2660 to 2720 K (4800' to 4900' R) temperature range desired. The 
steady-state ablative throat erosion rate w a s  0.005 cm/sec (0.002 in. /see), which also 
was  a significant improvement over 0.013 cm/sec (0.005 in. /see) with unmodified in- 
jector 2. The erosion pattern, however, w a s  somewhat irregular (see fig. 23). There- 
fore, it w a s  decided to t ry  to eliminate the circumferential irregularity of the ablative 
erosion and, at the same time, attempt to improve delivered vacuum specific impulse. 

The irregular ablative erosion experienced with injector 2A appeared to be caused 
by zone injector elements that were parallel to the wall  in some areas  and perpendicular 
to the wall  in other areas.  To overcome this, the injector elements in the outer zone of 
injector 2B (fig. 5(b)) were oriented in a radial pattern which generated spray fans in a 
circumferential direction (parallel to the wall). In order to improve the delivered spe- 
cific impulse, the O/F ratio in the zone was  increased to 1.40 (from 1.22 for injec- 
tor 2A) by decreasing the hole size of the fuel holes in the outer zone. Where possible 
(all but six elements), the fuel holes on the outer elements were reduced from the 0.061- 
centimeter (0.024-in. ) diameter of injector 2A by one dril l  size to 0.057-centimeter 
(0.0225-in. ) diameter. This gave a calculated zone O/F of 1. 40 and an O/F of 2. 30 in 
the core, with the overall O/F of 2.0. 
73 percent in the core and 27 percent in the zone. 

ft/sec) w a s  calculated from test measurements. 
in figure 24. 
the calibration firings of the original injector to an O/F of 2. 3, w a s  used to calculate a 
C* of 1677 m/sec (5503 ft/sec) for the outer zone. 

The data for injector 2B's specific impulse a r e  shown in figure 25. 
value w a s  3048 N-sec/kg (310.8 lbf-sec/lbm). This w a s  an increase of 31.4 N-sec/kg 
(3.2 lbf-sec/lbm) from injector 2A, due mainly to operating both core and zone closer 
to the performance peak. 

This zone provided 

The mass  flow split w a s  also changed slightly to 

Injector 2B was  tested at an overall O/F of 2.0, and a C* of 1643 m/sec (5391 
The C* operating points a r e  plotted 

A core C* of 1631 m/sec (5351 ft/sec), based upon an extrapolation of 

* The overall 
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The combustion temperatures calculated for the core  and the zone a r e  plotted in fig- 
ure  26. With the core  temperature at 2964 K (5335' R), the zone temperature w a s  
2737 K (4927' R). 
impulse w a s  achieved with a 74 K (134' R) increase in zone temperature compared to in- 
jector 2A. The temperature was  still 238 K (429' R) below that of the original injector. 

Although the erosion pattern w a s  somewhat more uniform, the steady-state erosion ra te  
w a s  0.0076 cm/sec (0.003 in. /sec), still l e s s  that injector 2 but higher than injec- 
tor  2A. The erosion ra te  and zone temperature seemed too high for the projected throat 
inser t  testing. 

outer zone temperature while maintaining the highest possible specific impulse. 
basic objective w a s  to decrease zone O/F somewhat and also to blanket the oxidant more  
completely with fuel. The outer elements were revised by substituting two fuel holes for 
each single outer fuel hole to the particular elements shown in figures 6(c) and (d). A 
jet spreading angle of 12' w a s  used to place the s t reams fo r  complete coverage of the 
oxidant by the fuel. 
significantly larger than the impact a r ea  of the inner fuel stream in an attempt to produce 
a bent spray fan pattern more nearly parallel to the curved wall. 
for injector 2C a r e  listed in table 11. 
O/F of 2.45 and 30 percent in the outer zone at an O/F of 1.31. 
the zone temperature lower than the 2737 K (4927' R) of injector 2B but above the 2663 K 
(4793' R) of injector 2A. 

ft/sec) w a s  calculated from test  measurements. 
in figure 28. Assuming the original core qC* of 97.6, a value of 1680 m/sec (5513 
ft/sec) w a s  calculated for  the zone C*. Again, both zone and core C* efficiencies 
were higher than the overall efficiency because their operating O/F's were on both sides 
of the performance peak O/F. 

onds w a s  calculated from measurements at an overall O/F of 2.0. 
values for injector 2A (307.6 sec) and injector 2B (310.8 sec), as expected. The same 
efficiency loss  caused by zone and core operation on opposite sides of the performance 
peak is illustrated. 

Another way of calculating the performance loss  due to O/F zoning is given in ref-  
erence 11. When the ICRPG method was  applied to the data of injector 2, a mixture ratio 
distribution loss  of 66 N-sec/kg (6.8 lbf-sec/lbm) w a s  calculated for injector 2C at an 
O/F of 2.0. This compares to the loss  of 72 N-sec/kg (7. 4 lbf-sec/lbm) calculated by 

Thus, the increase of 31.4 N-sec/kg (3.2 lbf-sec/lbm) in specific 

The influence of these modifications on ablative erosion is illustrated in figure 27. 

Consequently, it w a s  decided to make a further modification to  t r y  to decrease the 
The 

The impact a r ea  of the additional outer two fuel s t reams w a s  made 

The calculated values 

This O/F should place 
The mass  split w a s  70 percent in the core  at an 

When injector 2C was  tested at an overall O/F of 2.0, a C* of 1631 m/sec (5352 
The zone operating points a r e  plotted 

The specific impulse for injector 2C is shown in figure 29. A value of 308.6 sec- 
This w a s  between the 
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the constant thrust coefficient efficiency method used herein. Agreement was well within 
the precision expected from both methods. 

The temperature points for  injector 2C are shown in figure 30. The core is at 
2949 K (5308' R). The zone is at 2700 K (4861' F) - between the 2663 K (4793' R) of 
injector 2A and the 2737 K (4927' R) of injector 2B, with a reduction of 275 K (495' R) 
from the unmodified injector 2. 

ra te  of 0.0053 cm/sec (0.0021 in. /sec). The ablation ra te  seemed to be a reasonable 
compromise although the pattern w a s  still nonuniform. Since the impulse loss of 72.6 
N-sec/kg (7.4 lbf-sec/lbm) for  injector 2C relative to injector 2 w a s  reasonable for the 
275 K (495' R) temperature decrease, a tentative decision was  made to proceed with 
throat inser t  testing. 

Pr ior  to inser t  testing, however, a tes t  firing w a s  made with injector 2C and an 
instrumented heat-sink nozzle to provide an experimental check on the temperatures 
calculated from the C* and O/F values. Open bead tungsten/tungsten-rhenium thermo- 
couples of 0.097-centimeter (0.038-in. ) bead diameter were inserted at different depths 
into the combustion gas at the rocket throat. It w a s  possible to measure steady-state 
temperature outputs during 5-second test  firings pr ior  to thermocouple burnout. The 
values in figure 32 illustrate the measured temperatures through the peripheral zone of 
the combustion s t ream at the nozzle throat. Gas temperature at each depth w a s  meas- 
ured by three thermocouples spaced at 120' intervals. 
herein, a zone that would car ry  30 percent of the mass  flow through the throat would be 
0.617 centimeter (0.243 in. ) thick at the throat. The comparison of the temperatures 
measured at 0.457 and 0.610 centimeter (0. 180 and 0.240 in. ) from the wal l  agreed very 
well with the calculated values, which verified the presence of temperature zoning. Near 
the wall, the measured temperature was significantly below the calculated zone tempera- 
ture, probably due to heat transfer to the heat-sink nozzle wall from both the thermo- 
couple and the gas  it w a s  trying to measure. Another possible cause of the depressed 
temperature at the wall  of the nozzle could be  reduced chemical activity due to "kinetic 
quenching. Although the measurements were done in a heat-sink chamber, a temper- 
a ture  depression is also known to exist in ablative engines due to ablation and the flow of 
pyrolysis gases  f rom the wall. In any event, these measurements provided confidence 
in the design process so  that throat insert  testing could commence. 

The results of throat insert  testing were reported in reference 3, and a significant 
decrease in temperature was  confirmed. Figure 33(a) (fig. 27 of ref. 3) illustrates the 
beneficial influence of the injector modification on the life of identical zirconia throat 
inserts. It should b e  noted that throat inser ts  of significantly better materials a r e  also 
reported in reference 3. Testing of an ablative chamber section for  long duration also 
confirmed that a less severe  local combustion temperature was present in the chamber 

Ablative testing produced throat erosion, as shown in figure 31, with a steady-state 

For the engine size tested 
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with injector 2C. The contrasting appearance of the ablative chamber sections is shown 
in figures 33(b) and (c). 

A correlation of the ablative erosion with temperature for  injector 2 and its modifi- 
cations is given in figure 34. The erosion data from table II summarized here show a 
definite dependency of erosion on peripheral-zone combustion temperature. The curve 
of steady-state erosion rate  extrapolates to zero erosion a t  a temperature of 2481 K 
(4465' R). 
same temperature. This agrees with previous experience for zero erosion with vC* 
below 90 percent at an O/F = 2.0  (Tc = 2533 K or  4560' R). 

The influence on performance of various methods for decreasing peripheral-zone 
temperature is illustrated in figure 35. The O/F zoning method is seen to give signifi- 
cant performance gain over the efficiency-decrease method of temperature suppression. 

The method of overall O/F decrease does provide performance only 2.5 seconds 
below that of injector 2C. Coupled with increased propellant storage (tankage) weight 
required by low O/F operation, the vehicle performance loss  would be significant, how- 
ever. 

The curve of time to start erosion is approaching a vertical asymptote at the 

METHOD OF APPLICATION 

Before a detailed rocket engine design can be  attempted, several  important goals 
must be specified. 
the particular propellant combination used. 

Chamber pressure and expansion a rea  ratio values must be set  to derive theoretical 
vacuum specific impulse. The theoretical impulse values must be modified for kinetic 
losses, geometrical losses, and viscous and heat-transfer losses  before proceeding with 
injector design. A method for measuring or  calculating vacuum thrust coefficient effi- 
c i e n c ~  vCF, vac is required to derive nozzle losses. A method for  calculating o r  es -  
timating characteristic exhaust velocity efficiency qC* is required to determine energy 
release losses. When these losses  were accounted for, the vacuum specific impulse for 
injector 2 peaked a t  an O/F of 1.8 and a value of 3109 N-sec/kg (317 lbf-sec/lbm) 
(fig. 15). Using injector 2 a t  any O/F other than 1.8 involves a loss  of specific impulse, 
which must be  recognized. Even use of the unmodified injector at an O/F of 2.0, as 
shown in figure 13, involves a loss  of 1 second of impulse. Further, O/F zoning with an 
overall O/F of 2.0 produces impulse losses, as shown in figure 35. 
cific impulse, injector 2 should be  operated at an O/F of 1.8. 
too high a combustion temperature (2944 K or 5300' R), some form of peripheral cooling 
is necessary. 
1.8. 

The most significant is the vacuum specific impulse required from 

To maximize spe- 
Since this would produce 

To keep delivered impulse as high as possible, the core  O/F should be  
Three hypothetical cases  (A, B, and C) were calculated based upon a core O/F 
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of 1.8 (see table Xi). Each case w a s  selected at a zone O/F of interest to  show the in- 
fluence of temperature variation upon performance. Figure 36 illustrates the range of 
values calculated. All calculations were done for a 70-percent - 30-percent mass  split, 
which provides sufficient peripheral-zone temperature control for ablative-insert pro- 
tection at the scale tested. Overall impulse values were based upon the core remaining 
at its original C* efficiency of 97.6 percent for an O/F of 1.8. In order to confirm the 
general trend of performance for a core O/F of 1.8, a measured point (circular symbol) 
was  included in figure 36 for injector 2C operating with its core at 1.8 O/F and an over- 
all O/F of 1.47. The zone O/F w a s  0.96 at a calculated zone temperature of 2000 K 
(3600' R), which w a s  too low for this throat insert  investigation but may be of interest 
for  rocket vehicle systems requiring lower temperatures. Figure 37 illustrates the 
trend of zone element C* efficiency with decreasing O/F. Since these elements were 
designed to operate at an O/F of 1.31, the efficiency decrease w a s  not unexpected. A 
design for lower O/F - lower temperature operation could provide higher efficiency 

Character is t ic  exhaust 
velocity, C* 

TABLE 111. - INJECTOR PERFORMANCE AT CORE OXIDANT-TO-FUEL RATIO OF 1. 

Vacuum spec if ic impulse, I,,, 

(a) SI units 

Theoret-  Calculated, 
ical  (one- N-sec,,'kg 

In- Location Percent  -rr ec- of pro-  of pro-  
71, 

percent 
to r  pellant 1 

Overall 

Overall 

Over a1 1 

pellant 

70 
30 

100 

70 
30 

100 

70 

30 
100 

- 

2C Core  68.87 1 Zone 1 31. 13 
Overall 100.00 

Mixture 
ratio, 
0,' F 

1.800 
1.600 
1.737 

1.800 
1. 310 
1.632 

~- 
~ 

1.800 
1.120 
1.554 

~ 

~ 

1.800 
. 9 6 1  

1.471 
~~ 

of theo- 
re t ical  

Hypot het i c a1 inj ec  tor  s 

1702 
1742 
1736 

1702 
1734 
1740 

1702 
1706 
1741 

1702 
1666 

1741 

1691 
1705 
1694 

1691 
1679 
1687 

169 1 
1611 
1666 

97.60 
97.60 
97. 56 

97.60 
96.97 
96.95 

97.60 

94.52 
95.70 

Actual injector 

1691 
1521 

1637 

97.60 
91.33 

94.00 
~~ 

3280 
3262 
3279 

3280 
3 189 
3268 

3280 

3095 
32 54 

3280 
2993 
3236 

3112 
3094 
3110 

3112 
3006 
3079 

3112 
2843 
3026 

3112 
2657 

2957 

94.87 
94.87 
94.83 

94.87 
94.25 
94.24 

94.87 
91.87 
93.02 

- 

94.87 
88.77 

91.37 

Combus- 
tion tem- 
perature ,  

K 

2958 
2916 
_ - - -  

2958 
2700 

2958 
2387 
- _ _ _  

2958 
2041 
- - - -  
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TABLE III. - Concluded. INJECTOR PERFORMANCE AT CONE OXIDANT-TO-FUEL RATIO O F  1.8 

Character is t ic  exhaust 
velocity, C* 

Vacuum specific impulse, Ivac 

Theoret- Calculated, VI, 
ical  (one- lbf-sec/lbm percent  

of theo- 
re t ical  

[n - 
ec. 
ior 

Combus- 
tion tem-  
perature, 

oR 

2c 

70 
30 

LOO 

70 
30 

100 

70 
30 

100 

Locatior 
of pro-  
pellant 

m a s s  

1.800 
1.600 
1.737 

1.800 
1. 310 
1.632 

1.800 
1.120 
1.554 

Core  
Zone 
Overal l  

Core  
Zone 
Overall 

Core  
Zone 
Overal l  

5686 
5466 
5719 

Core  
Zone 
Overall 

5550 
4992 
5376 

Percent 
of pro- 
pellant 

flow 

Mixture 
ratio, 
O / F  

68.87 
31. 13 

100.00 

1.800 
. 9 6 1  

1 .471 

5686 
57 18 
5698 

5686 
5685 
5713 

5686 
5600 
57 19 

5550 
5581 
5559 

5550 
5513 
5539 

5550 
5293 
5473 

Actt 

97.60 
97.60 
97. 56 

97.60 
96.97 
96.95 

97.60 
94. 52 
95.70 

inj ec  to: 

97.60 
91.33 
94.00 

~ 

334.5 
332.6 
334.4 

334.5 
325.2 
333.2 

334.5 
315.6 
331.8 

334.5 
305.2 
330.0 

317.3 
315. 5 
317.1 

317.3 
306.5 
314.0 

317.3 
289.9 
308.6 

317.3 
270.9 
301.5 

94.87 
94.87 
94.83 

94.87 
94.25 486 1 
94.24 

94.87 
91.87 
93.02 

94.87 
88.77 
91.37 

operation of the zone elements and thus improve upon zone element efficiency at  1. 12 
and 0 . 9 6  O/F. 
ation at an overall O/F of 2. 0 is illustrated in figure 38. 
injector 2 is an O/F of 1 . 8  at a specific impulse of 3112 N-sec/kg ( 3 1 7 . 3  lbf-sec/lbm). 
Modification to injector 2C for operation at  an overall O/F of 2 . 0  reduces performance 
to 3025 N-sec/kg (308. 5 lbf-sec/lbm) even though both zone and core a r e  operating 
nearly as efficiently as before. This is because zone and core performance a r e  on op- 
posite sides of the performance peak with the overall performance on approximately a 
straight line between the two. A better method would be  that of hypothetical injector By 
where the core is a t  an O/F of 1 . 8  and the zone at 1 . 3 ,  requiring an overall O/F of 1 . 6 5  
for the 70-percent - 30-percent mass  split assumed. A specific impulse gain of 5 3 . 9  
N-sec/kg ( 5 . 5  lbf-sec/lbm) is seen over injector 2C. 

One way to improve upon the overall delivered impulse of hypothetical injector B 
and still maintain the 2685 K (4834' R) boundary gas temperature (O/F = 1. 31) would be  
to increase the mass  of propellant in the core  and decrease the mass  of propellant in 

The advantage of operating the core at  peak performance O/F over oper- 
The best  operating point for 
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the zone. This moves the overall O/F toward 1 .8  along the dashed line, thus increas- 
ing overall performance. Experiments to measure boundary-layer temperatures, as 
well as ablative nozzle firings, a r e  necessary to determine the influence of mass  varia- 
tion. 

O/F of 1.47 with the core  at an O/F of 1.8 and the zone at an O/F of 0.96. The per-  
formance loss of 137 N-sec/kg (14 lbf-sec/lbm) I was  measured with a calculated 
peripheral-zone temperature of 2008 K (3614' R) (fig. 36). Based upon figure 34, this 
zone temperature would b e  expected to provide zero ablative erosion for long-duration 
firings. If performance losses  of 137 N-sec/kg (14 lbf-sec/lbm) a r e  acceptable in re -  
turn for elimination of ablative erosion o r  in lieu of complex throat insert  systems, the 
tradeoff could be made as in figure 36. Further determination of the temperature- 
performance curve to lower temperatures would best  be  done experimentally. 
fluence of gross  temperature differences, as well as gross  O/F differences, might affect 
the mass  of propellants required to effectively blanket the core  with a low-temperature 
zone. 

A further point of interest  in figure 38 is the operation of injector 2C at an overall 

SP 

The in- 

CONCLUDING REMARKS 

In designing an injector to generate a zoned O/F distribution in the combustion 
chamber, several  guidelines a r e  obvious: 

(1) Select the core O/F at the point of maximum vacuum specific impulse at high 
expansion a r e a  ratio if performance is the only consideration. 

(2) Select the zone O/F to provide the desired wall  environment, recognizing that 
the further it is away from the maximum performance O/F, the lower the combined per-  
formance wi l l  be. 

(3) To maximize overall impulse with the core  a t  maximum specific impulse O/F, 
make the core mass  flow as large a percentage of the total as possible without diluting 
the zone O/F influence on the wall. In the present case, 70-percent mass  flow in the 
core  was effectively blanketed by 30-percent mass  flow in the zone, but these values 
were not necessarily optimum and would likely vary for other engine sizes.  

and core uniformly across  the injector face with a maximum number of elements of a 
minimum practical size. 
momentums (after impingement). 

(4) Discourage mixing between zone and core.  Distribute the mass  flow of both zone 

Avoid all recirculation flows or  radial o r  circumferential 
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SUMMA RY OF RES ULTS 

The influence of combustion gas flow stratification on overall engine performance, 
as well as on ablative and throat inser t  performance, was measured. The test engine 
w a s  a rocket engine with a 7.62-centimeter (3.0-in. ) throat diameter using earth- 
storable propellants at a chamber pressure  of 690 kN/m (100 psia). The following re -  
sults were obtained: 

indicated that the combustion products from a rocket thruster of 4450-N (1000-lbf) s ize  
can be  divided and generally maintained in two discrete zones through the throat region. 

2. With 70 percent of the m a s s  flow in the core and 30 percent of the mass  flow in 
the outer zone, a significant influence on the ablative erosion can be  obtained by main- 
taining an overall oxidant-to-fuel mixture ratio (O/F) of 2.0 and setting the core O/F at 
2 .3  to 2.5 and the zone O/F a t  1 .4  to 1 .2 .  

3. A direct correlation for  the data reported herein exists between ablative erosion 
ra te  (as well as time for  erosion to start)  and combustion temperature in the outer zone 
as determined by zone O/F and characteristic exhaust velocity efficiency qC*. A zone 
temperature of 2700 K (4861' R) at an O/F of 1 .31 produced improved ablation results 
with the core operating at 2949 K (5308' R) and an O/F of 2.45. 

4. For the same peripheral combustion temperature, O/F zoning allows higher 
specific impulse than simply decreasing overall injector efficiency. 
and an overall O/F of 2.0, overall vacuum specific impulse is a function of temperature 
in the peripheral zone. 
3026 N-sec/kg (308.6 lbf-sec/lbm) (nozzle a r e a  expansion ratio E = 60) was  achieved 
with an overall O/F of 2. 0. 

include operation of the core  at  the O/F for peak impulse and a minimum percent of 
mass  flow in the zone. 
heat-sink engines a r e  useful tools for  evaluation of zoned injectors. 

2 

1. Combustion gas temperature measurements and ablative throat erosion ra tes  

For O/F zoning 

At a desired zone temperature of 2700 K (4861' R), a value of 

5. Based upon the work reported herein, an optimum system for  O/F zoning would 

Ablative thrust chambers and peripheral-zone measurements on 

Lewis Research Center, 
National Aeronautics and Space Admini st r a t  ion, 

Cleveland, Ohio, May 17, 1972, 
113-31. 
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APPENDIX - SYMBOLS 

A 

" c* 

cF 

'm 

'd 

D 

F 

g 

I 

L* 

O/F 
P 

A P  

P 

R 

AR 

T 

V 

V 

W 

CY 

P 

E 

iT 

P 

cp 

2 2 area, cm ; in. 

characteristic exhaust velocity, m/sec; ft/sec 

flow coefficient (0.991 - Kliegel-Levine curve of ref. '11) 

thrust coefficient 

momentum coefficient equals Cd 

diameter, cm; in. 

thrust, N, lbf 

gravitational constant, 9.8 m/sec ; 32. 174 ft/sec 

specific impulse, N-sec/kg; lbf -sec/lbm 

characteristic chamber length, cm; in. 

oxidant-to-fuel weight mixture ratio 

total pressure, kN/m ; psi (absolute) 
2 2 injector pressure drop, N/m ; lbf/in. 

static pressure, kN/m2; psi (absolute) 

throat radius, cm; in. 

throat radius change, cm; in. 

temperature, K; OR 
volume, cm ; in. 

velocity 

mass  flow rate, kg/sec; lbm/sec 

nozzle divergence half-angle, deg 

jet spreading angle, deg 

nozzle expansion area  ratio 

efficiency, percent 

nozzle divergence correction, 1/2( 1 + cos cy) 

3. 1416 

( 2, 

2 2 

2 

3 3 

density, kg/m3; lbm/ft 3 

momentum pressure loss correction 
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Subscripts: 

C 

calc 

com 

con 

d 

e 

eff 

exP 

ex 

f 

i 

inj 

n 

odk 

ox 

P 

t 

the0 

vac 

e 
0 

chamber 

calculated 

combust ion 

contraction 

discharge 

expansion 

effective 

experimental 

exit (nozzle) 

fuel 

initial 

injector 

subsonic nozzle entrance 

one-dimensional kinetic 

oxidant 

propellant 

throat 

theoretical equilibrium 

vacuum 

time 

ambient 
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Figure 1. - Test facility. 

-Run load cell tension 

Fire mlve 
Turbine Venturi 

CD-11260-33 

Figure 2 - Flow system. 
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Thermocouple immersion 
depth, 

cm (in.) 

0 0.610 (0.240) 
El .457 (.180) 
h .254 (. 100) 
D . lo2 (.040) 

Thermocouple location 
in throat  plane 

Thermocouples7 
I 

/ 

C-68-4096 P 

Figure 3. - T h r u s t  chamber assembly: heat-sink chamber and nozzle. Thermocouple type, immersion. 

30 



Spray fans 

Material: 
\ 
\ I 

4 Pattern symmetrical about center l ines 

- 6 1  Oxidant holes; 
diam, 0.109 (0.043) 

C D-11261-33 
Element detail; scale, 211 

Figure 4. - Injector 1. (All dimensions not otherwise noted are in centimeters (in. ).) 

I 
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/r Patterns are 1 symmetrical /’ / a r o u n d t h e  ’ // center l ines 

,-Material: 6061-T6 a lum inum 
I 

I 
/ 

-137 Oxidant holes; 
diam, 0.889 (0.035) 

Element detail; scale, 411 1- 
CD-11262-33 

1 t- 1.574 (0.620) 

Figure 5. - Injector 2. (All dimensions not otherwise noted are in centimeters (in.).) 
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2i 25 

I Elements 1 Fuel hole diameter 1 9- I 
1, 9, 11, 19, 27, 29 

(a) Injector ?A. Fuel holes on  elements 1 to 36 were enlarged to 0.061-centimeter (b) Injector 2B. 
(0.024-in. ) diameter. 

Figure 6. -Modifications of injector 2. Chamber diameter, 13.20 centimeters (5.200 in. ). A l l  core elements in gr id  as in f igure 5. 

CD-11263-33 



\ AB? 27 

Elements 

3, 17, 21, 35 
1, 9, 11, 19, 27, 29 

I 

Fuel hole diameter 

cm in. cm in. 

Outside (two) Inside (one) 

0. 061 0.024 0.057 0.0225 
.041 ,016 .061 .024 

d l  
A B  

A l l  other numbered elements .041 .016 

16 

.057 .0225 

U "  

. A  

CO-11264-33 

Figure 6. - Continued. 



A' 

10, 28 
9, 11. 27, 29 
8. 12, 26, 30 
7. 13, 25. 31 
6. 14, 24. 32 
5. 15. 23, 33 

(0.035 in.)-, 

0.401 0.1576 0.148 0.0585 0.401 0. 1576 0.148 0.0585 0.434 0.1710 18" 20' 0.434 0.1710 18" 20' 
,401 ,1576 ,148 .OX5 ,401 ,1576 .148 .a585 ,434 . 1710 18' 20' ,434 ,1710 18' 20' 
,373 ,1470 .138 .OH5 ,478 ,1884 ,177 ,0696 ,405 . 1595 17" 10' .517 ,2035 21" 30' 
,376 ,1479 .139 ,0549 ,455 ,1790 . I68  .0662 ,408 ,1605 17' 20' ,492 ,1935 20" 30' 
,385 ,1515 .143 ,0553 ,416 . 1638 ,155 .&lo ,418 ,1645 17" 40' ,454 .1785 19" 0' 
,416 ,1638 ,155 .M10 ,385 ,1515 ,143 .a563 ,454 ,1785 19' 0' ,418 ,1645 17-40' 

angle ::1 \ 

I 

1.310 cm (0.516 in. ) 

Section A-A 

A AN0 B NOTATION ON FIG. 6Kl CD-11265-33 

1 4, :: 16, ;; 22. 21.351 34 14221 ,455 . 1 ~ 3 1  .179O .la1 ,168 ,0662 .ma51 ,376' b r n q  . 1419 1 , . I39 Exirnq I ,0549 I ,492 : 4 ~ 1  :1770119; ,1935 20" 30' ,408 ,3521 .1~5115;  ,1605 17" 20' o i l  

2. 18, 20. 36 ,433 ,1705 ,160 ,0631 ,381 1502 142 0558 469 1845 19 40 ,414 ,1630 17 30 
,401 ,1576 ,148 ,0585 .401 1576 ,148 .a585 ,434 ,1710 18 20 ,434 ,1710 18 20 

I I I I I I I I I I I I I I I I  

(d) Element at 

Figure 6. - Concluded. 
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I I 1  I 1  I 1.111.111.111 I .I I.. I I I .I I , . _. ....-. 

13.2 
(5.20) 

1 - 

~ 23.8 (9.0) and 15.2 (6.0) 

/ 

,-Flame spray: 
1 0.0305 (0.012) Nichrome 
/ 0.0458 (0.018) Zi rcon ia  
I 

I 
/ 

Section A-A 

(a) Chamber; diameter, 13.2 centimeters (5.20 in.). 

Section A-A 
CO-10474-33 

(b) Nozzle; th roa t  diameter, 7.62 centimeters (3.0 in. 1. 

Figure 7. - Heat-sink t h r u s t  chamber. Material, m i l d  steel. (A l l  l i near  dimensions are in  centimeters (in.).) 
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- 23.8 (9.0) and 15.2 (6.0) - I* 
fl 

Water 
in le t  

Water 
outlet 

1.35 (17/32) diam holes, 
.' eight places o n  19.05 

(7.50) bolt c i rc le  

/ 
Section A-A / 

/ 
32 Channels 
0.152 (0.06) deep 
by 0.635 (0.25) wide 

(a) Chamber; diameter, 13.2 centimeters (5.20 in. 1. 

3.82 (1.51 rad, 

n 

0. 178 (0.071 deeD 
by 0. 190 (0.0751'wide 

Section A-A  

CD-10475-33 

(b) Nozzle; throat diameter, 7.62 centimeters (3.0 in. ) 

Figure 8. - Water-cooled t h r u s t  chamber. Material, 6061-T6 alunl inuni .  (All l inear dimensions are in centimeters (in. ).) 
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1094 

Figure 9. - Thrus t  chamber assembly: water-cooled chamber and nozzle. 
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35.56 

l l  I 13.20 (5.20) 1 

T Si l ica phenolic 
(MX2646) 

1 15.24 
I_ (6.0) -4 

Figure 10. - Ablative t h r u s t  chamber. (All l i near  dimensions are in centimeters (in.).) 
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-1 7 30.48 (12.00) 

24.75 (9.75)- 

D r i l l  and tap 1/2 
/--,it0 20 NF; 1.57 

/’ (0.62) deep; eight 

on 28.58 (11.25) 

CD -11267-33 

Figure 11. - Ablative t h r u s t  chamber w i th  l i n e r  and throat insert. (A l l  l i near  dimensions are in centimeters (in. ). 
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.- f 5 0 0 0 b  

m 1 
0 

4800 

''Or 

0 131 5m01 
c 
0 c 
VI 
.- 

3800 

u 

3400 

3000 

750r 
I - 

1 -- 

0 Injector 1 
0 Injector 2 -- Extrapolation 

a, L 

c 
3 
m 
I 
a, a 

I E, 

. 8  1.0 1. 2 1.4 1.6 1. 8 2. 0 2. 2 2.4 2.6 
Mixture ratio, O/F 

Figure 12. - Performance of original injector. 

3200r 
3 0 0 0 1  

Percent of 
theoretical 
combustion 
temperature - 100 - 98 - 96 e G y;; 90 

88 
86 

- 8 4  
Q7 

VI m Ol 

!z 
0 c 

VI 3 .n 

E 
0 u 

._ 

0 Injector 1 
0 Injector 2 

---- Extrapolation 

1 8 0 0 Y  

2.4 2.6 
I 

2. 2 
I 

2.0 
I 

1.8 
I 

1.6 
I 

1.4 
I 

1.2 
l 6 0 d  I 

. 8  1.0 
Mixture ratio, O/F 

Figure 13. - Calculated combustion temperature - injectors 1 and 2. 
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Measured performance, 
F/Wp 

In jector  1 
Injector 2 

0 
0 

Calculated performance, 
(?lcF C )(VCF)(I,ac,odk) 

-_-- Injector  1 
One-dimensional --- Injector  2 

rsr equi l ibr ium (ODE) 7. 
One- 260r 0 I dimensional 

\ 
\ 
\ ,-Kinetic losses 

I 

I 
2.4 

L -1 1. -1 I 4 1  I 
2200 

1.0 1.2 1.4 1.6 1.8 2.0 2.2 
M ix tu re  ratio, O/F 

Figure 14. -Measured engine performance. Expansion area ratio, 1.80; conical nozzle (diver- 
gence half-angle, 19). 

3400 1 ---- Injector 1 _-- Injector  2 

One-dimensional 

One-dimensional 

Figure 15. - Calculated engine performance. Expansion area ratio, 60; conical nozzle (diver- 
gence half-angle, 15% 
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Post-test throat profiles 
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.- !::I Lz m 
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.- 
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-. 1 I 
0 50 

I 
100 

Injector 1 '\, 

>Reference disk a t  ' throat; diameter, 7. 56 cm 

Injector 2 

Total f i r i n g  time, sec 

Figure 16. - Ablative throat  erosion comparison - injectors 1 and 2. 
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